If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-2000=0
a = 1; b = 0; c = -2000;
Δ = b2-4ac
Δ = 02-4·1·(-2000)
Δ = 8000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8000}=\sqrt{1600*5}=\sqrt{1600}*\sqrt{5}=40\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{5}}{2*1}=\frac{0-40\sqrt{5}}{2} =-\frac{40\sqrt{5}}{2} =-20\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{5}}{2*1}=\frac{0+40\sqrt{5}}{2} =\frac{40\sqrt{5}}{2} =20\sqrt{5} $
| y/9+47=49 | | -3(z-61)=-60 | | 7.6x-7.5=7.7 | | -3(z-61)=-61 | | 94=29+5j | | 6=1q=14 | | 9(w-91)=27 | | -7x-6x-23x=180 | | 14/5=7/15xx= | | 20x-1+11x+1+30x-3=180 | | 5=-51+8x | | 61x+90=70x-45 | | y^2+y=-20 | | 11=x+ | | 20x-1+30x-3+11x-1=180 | | 4x+34=14-66x | | 26x+6+136=180 | | 2(5/3y+7)=1 | | 5(t-78)=45 | | 4x+34=63+x | | 10/3y=-13 | | 4j+42=-30 | | 2x-38=24 | | 4(j+9)=92 | | 820-t*15=350 | | -12+9=-15x | | 5t-78=45 | | x-(25)=-16 | | 5x+35=8x+10 | | P=10000x | | 5(p+7)=80 | | s/6-3=5 |